

Chapter 10

Bio-Remediation Technology

Manjula Chaudhari^{1*}, Neethu T.M¹ and Dinesh Chaudhary²

¹Assistant Professor, Department of Soil Science and Agricultural Chemistry, N.M. College of Agriculture, NAU, Navsari- 396450.

²Assistant Professor, Director of Research Office, Navsari Agricultural University, Navsari- 396450.

Abstract

Every year, large amounts of organic and inorganic substances enter the environment as a consequence of human activities. Some of these substances are released intentionally under controlled and regulated processes, such as emissions from industrial operations, while others are discharged unintentionally through incidents like oil leaks or chemical accidents. Many of these compounds are hazardous and resistant to degradation, allowing them to persist in both land and water environments. When their concentrations exceed acceptable limits, they contaminate soil, rivers, lakes, and underground water sources. Human well-being is strongly dependent on environmental quality. In earlier times, natural resources were widely regarded as limitless; however, it has become clear that careless exploitation and unsustainable practices have led to widespread environmental damage. One of the most pressing global environmental challenges today is land contamination. In many instances, this problem originates from past industrial activities conducted before the risks associated with hazardous materials were fully recognized. As a result, international efforts have increasingly focused on cleaning up contaminated land, either to reduce potential harm or to enable safe redevelopment. Historically, remediation efforts have focused on the removal of contaminated soil for disposal in landfills or the isolation of pollutants at the site through capping. However, both methods have significant shortcomings. Soil excavation does not resolve contamination permanently, as it simply shifts the problem elsewhere and introduces additional risks during the excavation, transportation, and disposal of hazardous materials. Moreover, the availability of suitable landfill facilities has decreased, resulting in increased costs and logistical constraints. In contrast, capping and containment strategies provide only a temporary remedy, since contaminants remain in situ, requiring continuous monitoring, regular maintenance, and long-term financial and legal accountability. A more sustainable remediation approach involves the destruction or detoxification of contaminants rather than their relocation or confinement. To this end, advanced treatment technologies, including high-temperature incineration and chemical degradation processes such as base-catalyzed dechlorination and ultraviolet oxidation, have been developed. While these methods can effectively reduce pollutant concentrations, their application is often limited by technical complexity, high operational costs—particularly for small-scale sites—and public concern. Incineration, in particular, has faced resistance due to perceived risks of increased exposure to hazardous substances for site workers and surrounding communities.

Keywords: Hazardous, Detoxification, Remediation, Excavation, Contaminants.

1. Introduction

Bioremediation is an advanced technique that employs natural biological processes involving microorganisms, fungi, green plants, or their enzymes to eliminate toxic contaminants and restore the natural environment to its original condition. This process utilizes microbial metabolism under optimum environmental conditions and sufficient nutrient availability to degrade contaminants. Bioremediation technologies are generally classified as *in situ* (treatment at the contamination site) or *ex situ* (removal and treatment elsewhere), with examples including bioventing, landfarming, bioreactors, composting, bioaugmentation, rhizofiltration, and biostimulation. Microorganisms that perform this function are known as bioremediators. However, not all contaminants are easily treated using this method; for instance, heavy metals such as cadmium and lead are not readily absorbed or degraded by microorganisms, and the assimilation of metals like mercury into the food chain can exacerbate environmental problems. Recent studies have focused on biotechnological approaches to enhance remediation efficiency, particularly biostimulation—the addition of limiting nutrients to support microbial growth—and bioaugmentation—the introduction

of living cells capable of contaminant degradation. While these methods have gained significant attention, research indicates that combining both approaches can be feasible, though not always more beneficial than individual applications. The selection of an appropriate technology depends on site-specific factors such as the presence and abundance of degrading microorganisms, nutrient availability, temperature, and duration of exposure. Overall, the ongoing efforts in bioremediation research aim to optimize and manipulate these processes to achieve technically and economically viable solutions for the comprehensive treatment of petroleum hydrocarbon-contaminated soils [1, 2].

Bioremediation offers a cost-effective and environmentally friendly alternative to conventional remediation methods by utilizing natural biological activity to destroy or render harmless various contaminants. These low-technology approaches generally enjoy high public acceptance and can often be implemented on-site. However, bioremediation is not universally applicable, as its effectiveness depends on the nature of the contaminants, environmental conditions, and time requirements. Furthermore, the residual contaminant levels achieved may not always meet regulatory or safety standards. Successful implementation of bioremediation demands substantial expertise and experience, as it requires thorough site assessment and optimization of environmental conditions to achieve satisfactory outcomes [3, 4].

2. Types of bioremediation

The Bioremediation process can be broadly classified into 2 type's In situ bioremediation and ex situ bioremediation based on site of remediation is carried out.

2.1. In situ bioremediation

In situ bioremediation is viewed as the most suitable approach because it treats pollutants directly at the contaminated site without requiring excavation or causing disturbance [5]. While this approach is generally cost-effective—since it avoids expenses associated with excavation and transportation, requiring only the investment needed for equipment that supports microbial activity—it tends to offer less control and may be less efficient than ex situ techniques. Nevertheless, in situ bioremediation is commonly applied for the remediation of sites contaminated with substances such as dyes, chlorinated solvents, heavy metals, and hydrocarbons [6]. In situ bioremediation can be classified into two main types: intrinsic in situ bioremediation, which relies on naturally occurring microbial activity without additional intervention, and enhanced in situ bioremediation, which incorporates techniques such as bioventing, biosparging, and phytoremediation.

2.1.1. Intrinsic in situ bioremediation

This technique of bioremediation is also recognized as natural attenuation and it is one of the known in situ bioremediation methods. This method involves the unassisted and passive remediation of contaminated sites without any human interference. This technique includes both aerobic and anaerobic microbial processes for the treatment of biodegradable and recalcitrant pollutants. To establish a successful and sustainable process, regular monitoring is required in spite of the absence of any external forces in this process, therefore it is also termed as monitored natural attenuation [3].

2.1.2. Enhanced in situ bioremediation

Enhanced in situ bioremediation involves actively improving site conditions to accelerate microbial degradation of contaminants. This may include introducing nutrients, oxygen, water, or selected microorganisms, or modifying site conditions to better support microbial activity. Techniques such as biostimulation, bioaugmentation, biosparging, bioventing, and bioslurping fall under this category [7].

Bioaugmentation

Bioaugmentation is a strategy where specific microorganisms—either native strains, microbes sourced from other environments, or genetically engineered varieties—are deliberately added to contaminated soil or water to improve degradation efficiency. This technique is commonly applied to municipal wastewater treatment and the remediation of soils polluted with aromatic or chlorinated hydrocarbons. Challenges may arise when introduced microbial populations compete with native communities, making careful management of the treatment system essential [8].

Biostimulation

Biostimulation is a widely recognized and economical in situ bioremediation strategy that enhances the natural degradation capacity of contaminated environments. This approach involves the addition of essential nutrients or amendments to stimulate native microbial communities, enabling them to break down pollutants more efficiently within soil or groundwater systems. Numerous studies have demonstrated its effectiveness in treating sites contaminated with hydrocarbons and heavy metals, highlighting its importance as a reliable and sustainable remediation technique [9].

Bioventing

Bioventing is a bioremediation technique in which oxygen and, when necessary, nutrients are introduced into contaminated soils through injection or extraction wells to promote aerobic microbial degradation. Unlike conventional air sparging, bioventing operates at low airflow rates, supplying only the amount of oxygen required to sustain microbial activity while minimizing the volatilization and atmospheric release of contaminants. This method is particularly effective for treating contamination in the vadose zone and is commonly applied to the biodegradation of low-molecular-weight hydrocarbons, residual fuels, light petroleum spills, and certain volatile organic compounds present in soil [10, 11].

Bioslurping

Bioslurping is a remediation technique that combines vacuum-enhanced pumping, bioventing, and soil vapor extraction to remove contaminants from soil and groundwater. Oxygen is supplied indirectly to support microbial activity, which helps break down pollutants. However, this method is less effective in soils with low permeability, as limited oxygen movement reduces microbial degradation. Bioslurping is mainly used to remove volatile and semi-volatile organic contaminants from both soil and liquid phases [12].

Biosparging

Biosparging differs from bioventing in that air is injected directly into the saturated zone below the ground surface. This air injection causes volatile organic contaminants to move upward toward the surface, where biodegradation occurs more effectively, while also increasing oxygen availability to stimulate microbial activity. The success of biosparging largely depends on soil permeability and the ability of the pollutants to be biodegraded. This technique has been widely applied to clean aquifers contaminated with hydrocarbons such as benzene, toluene, ethylbenzene, and xylene, as well as petroleum-based products [9].

2.1.3. Phytoremediation

Phytoremediation is an emerging and environmentally sustainable bioremediation approach that uses plants and their associated root systems to remove, stabilize, or transform contaminants in soil and water. Studies have shown that pollutant removal by plants typically occurs through passive uptake by roots, translocation from roots to shoots via xylem transport, and subsequent accumulation in aboveground tissues [13].

Plant-based remediation systems possess significant potential to degrade, immobilize, accumulate, or transform persistent contaminants by functioning as natural biofilters and metabolizing pollutants through plant-associated biochemical processes [14]. Phytoremediation is widely regarded as an innovative and cost-effective alternative for the remediation of hazardous contaminated sites.

The selection of phytoremediation techniques depends on the nature of the contaminants, including inorganic pollutants such as toxic heavy metals and radionuclides, and organic compounds such as hydrocarbons and chlorinated substances. The fate of these pollutants within the plant system may involve accumulation, degradation, stabilization, volatilization, transformation, filtration, or a combination of these processes [15].

Phytoextraction

Phytoextraction, also referred to as phytoaccumulation or rhizo-accumulation, is a phytoremediation technique in which plants absorb contaminants from soil or water and concentrate them within their roots, shoots, and leaves. This process results in the formation of plant biomass enriched with pollutants, particularly heavy metals. The contaminated plant material is subsequently harvested and transported for safe disposal or metal recovery through recycling processes [14].

Phytodegradation or Rhizodegradation

Phytodegradation, also known as rhizodegradation, involves the breakdown of contaminants through the action of enzymes and proteins produced by plants and microorganisms present in the rhizosphere. This process relies on a symbiotic relationship between plants and soil microbes, where plants supply organic compounds that support microbial growth, and microorganisms facilitate the biodegradation of pollutants by creating favourable conditions for enzymatic activity [13].

Phytostabilization

Phytostabilization is a remediation approach aimed at reducing the mobility and bioavailability of contaminants in soil and water. In this technique, plants immobilize pollutants by incorporating them into stable root systems or soil matrices, thereby limiting their spread to surrounding environments and preventing their release into the atmosphere [14].

Phytotransformation

Phytotransformation involves the uptake of toxic organic contaminants from polluted soil, water, or sediments by plants, followed by their biochemical conversion into less toxic or non-toxic compounds. This transformation occurs through metabolic processes within plant tissues, contributing to the detoxification of contaminated environments [15].

2.2. Ex situ bioremediation

Ex situ bioremediation involves the excavation and removal of contaminated soil or other polluted materials from the original site, followed by treatment at a separate location using biological processes. This approach allows greater control over environmental conditions such as aeration, nutrient availability, moisture, and temperature, which can enhance the efficiency of pollutant degradation. Ex situ bioremediation techniques are broadly categorized based on factors including the type and concentration of contaminants, depth of pollution, treatment cost, and the geological and geographical characteristics of the affected site. Common ex situ methods include landfarming, composting, biopiling, bioreactors, and biofilters. After successful treatment, the remediated soil may be reused for purposes such as landscaping or site restoration [16].

Biopiling

Biopiling, also known as the heap treatment method, is a controlled bioremediation technique that integrates principles of landfarming and composting. The process typically begins with laboratory analysis to assess the biodegradation potential of the contaminated soil. This is followed by mechanical treatment to homogenize the soil, after which the excavated material is arranged into piles. Nutrients are added, and forced aeration is applied to promote microbial activity and accelerate contaminant degradation. In some cases, specialized microbial cultures may also be introduced to improve remediation efficiency.

A typical biopiling system consists of a treatment bed equipped with an aeration network, irrigation and nutrient delivery systems installed beneath the soil pile, and a leachate collection system. Biopiling is particularly effective for soils contaminated with low-molecular-weight organic compounds and petroleum hydrocarbons, including BTEX compounds, polycyclic aromatic hydrocarbons (PAHs), and phenols. This method has also been successfully applied in harsh environments, such as cold regions, where biological activity is otherwise limited [17]. Due to its relatively low cost and the ability to regulate parameters such as temperature, pH, and nutrient levels, biopiling is increasingly favoured as a practical ex situ bioremediation option [18].

Landfarming

Landfarming is an ex situ bioremediation technique in which contaminated soil is excavated and spread in thin layers over a prepared surface above ground level. The soil is periodically tilled to improve aeration and to stimulate aerobic biodegradation by indigenous microorganisms. Tilling also facilitates the uniform distribution of nutrients and moisture, which are essential for sustained microbial activity [19].

This method is generally limited to the treatment of shallow soil layers, typically up to 10–35 cm in depth. Soil pH can be adjusted and maintained at near-neutral levels through the application of agricultural lime to enhance microbial efficiency. Although landfarming is primarily classified as an ex situ technique, it may be considered in situ in certain applications where soil disturbance is minimal. Landfarming is widely used for the remediation of soils contaminated with aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls (PCBs) [20]. Owing to its simple design, low operational cost, minimal equipment requirements, and ease of maintenance, landfarming is regarded as one of the most economical bioremediation approaches and is increasingly adopted as an alternative to conventional soil disposal methods [21].

Bioreactors

Bioreactor-based bioremediation involves the use of engineered reactors or containment systems to degrade contaminants under carefully controlled conditions. These systems, which include slurry and aqueous bioreactors, are designed to treat contaminated solid materials such as soil, sludge, and sediments, as well as polluted water. The effectiveness of bioreactor systems is attributed to precise control over key parameters, including bioaugmentation, nutrient addition, mass transfer, pollutant bioavailability, and optimal environmental conditions for microbial activity.

Bioreactors are commonly applied for the treatment of soils and water contaminated with volatile organic compounds, including benzene, toluene, ethylbenzene, and xylene. Compared to other bioremediation approaches, bioreactor-based treatment offers significant advantages due to the ability to monitor, regulate, and optimize the biological processes responsible for pollutant degradation, thereby improving remediation efficiency and reliability [22].

Biofilters

Biofiltration is primarily employed for the treatment of gaseous contaminants. In this method, polluted air is passed through filter media that support the growth of specialized microorganisms capable of degrading airborne pollutants. These microbial communities, immobilized within packed columns or beds, metabolize gaseous contaminants as the air flows through the system, resulting in effective pollutant removal [23].

3. The advantage of Bioremediation

1. Bioremediation is a natural and environmentally sound process that uses microorganisms and plants to break down contaminants in soil, water, and other media. Microbes and plants are capable of degrading pollutants multiply when contaminants are present and decline once the pollutants are removed. The end products of this process are generally harmless substances such as water, carbon dioxide, and microbial biomass.
2. This method requires minimal operational effort and can often be carried out directly at the contaminated site, reducing disruption to normal activities. On-site treatment also eliminates the need to transport hazardous waste, thereby lowering the risk to human health and the environment associated with handling and transportation.
3. Bioremediation is a cost-effective alternative to conventional clean-up technologies, as it typically involves lower equipment, energy, and labour costs. It has proven particularly useful for treating oil-contaminated soils and other organic pollutants.
4. Another major advantage is its ability to completely destroy contaminants rather than merely transferring them to another location. Many hazardous compounds are converted into non-toxic products, reducing long-term environmental risks and future liabilities related to waste disposal.
5. The process avoids the use of harmful chemicals. Instead, nutrients such as fertilizers may be added to stimulate microbial growth, a practice commonly applied in agricultural and landscaping settings. As contaminants are transformed into harmless products, they are effectively eliminated from the environment.
6. Overall, bioremediation is simple, labour-efficient, economical, and aligned with natural ecological processes. It is a sustainable and eco-friendly approach that allows contaminants to be treated in place with minimal intrusion, often enabling continued use of the site during remediation.
7. As a result, it is an effective and environmentally responsible option for restoring contaminated ecosystems [1, 24, 25].

The disadvantage of Bioremediation

1. Bioremediation is effective only for contaminants that can be broken down biologically.
2. Many pollutants resist microbial degradation and therefore cannot be treated using this approach. In some cases, the by-products formed during biodegradation may persist longer in the environment or be more toxic than the original contaminants.
3. Biological treatment processes are often highly specific and depend on several site-specific conditions. Successful bioremediation requires the presence of suitable microorganisms, favourable environmental conditions such as temperature, pH, and oxygen levels, as well as adequate nutrients and appropriate contaminant concentrations.
4. Scaling up bioremediation from laboratory or pilot studies to full-scale field applications remains challenging, as results obtained under controlled conditions may not accurately predict field performance.
5. Additionally, further research is needed to design bioremediation technologies capable of addressing sites contaminated with complex and unevenly distributed mixtures of pollutants, which may exist in solid, liquid, or gaseous forms.
6. Compared to conventional remediation methods such as soil excavation, removal, or incineration, bioremediation often requires a longer time to achieve desired results.
7. Moreover, regulatory challenges persist due to the lack of clearly defined performance standards. There is no universally accepted definition of site “cleanliness,” making it difficult to assess treatment effectiveness or establish clear endpoints for bioremediation projects [1, 24, 25].

4. Conclusion

Bioremediation is a cost-effective and environmentally friendly method for cleaning up contaminated sites. Compared to conventional remediation technologies, it requires lower operational costs and causes minimal disturbance to the environment. Bioremediation techniques can be applied directly at contaminated locations, including areas that are difficult or impractical to excavate. By using natural biological processes to degrade or stabilize pollutants, bioremediation provides an efficient and sustainable solution for the management of hazardous waste.

5. Future Perspectives

Continued progress in molecular biology and biotechnology is expected to significantly improve the performance of bioremediation strategies. Advances in genetic engineering have made it possible to develop specialized microorganisms with enhanced abilities to break down persistent and complex pollutants. In addition, innovative approaches such as nanobiotechnology and microbial fuel cells are gaining attention for their potential to increase remediation efficiency and energy recovery. A more comprehensive understanding of microbial diversity, metabolic pathways, and plant–microbe interactions will further support the targeted and effective application of bioremediation techniques. Together, these developments highlight the growing role of bioremediation as a key technology for achieving long-term environmental sustainability.

References

- [1] V. M. Kensa. Bioremediation—an overview. *Journal of Industrial Pollution Control*, 27(2):161–8, 2011.
- [2] S. Sharma. Bioremediation: features, strategies and applications. *Asian Journal of Pharmacy and Life Science*, 2231:4423, 2012.
- [3] C. C. Azubuike, C. B. Chikere, and G. C. Okpokwasili. Bioremediation techniques—classification based on site of application: principles, advantages, limitations and prospects. *World Journal of Microbiology and Biotechnology*, 32(11):180, November 2016.
- [4] B. Tyagi and N. Kumar. Bioremediation: Principles and applications in environmental management. In *InBioremediation for environmental sustainability*, pages 3–28. Elsevier, 2021.
- [5] V. Kumar, S. K. Shahi, and S. Singh. *Bioremediation: an eco-sustainable approach for restoration of contaminated sites*. In *Microbial bioprospecting for sustainable development 2018 Sep 19*. Springer, Singapore.
- [6] S. Kim, R. Krajmalnik-Brown, J. O. Kim, and J. Chung. Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. *Science of the total environment*, 497:250–9, November 2014.
- [7] T. Garima and S. P. Singh. Application of bioremediation on solid waste management: a review. *J Bioremed Biodegr*, 5(06):248, September 2014.
- [8] G. L. Niu, J. J. Zhang, S. Zhao, H. Liu, N. Boon, and N. Y. Zhou. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with *Pseudomonas putida* ZWL73. *Environmental Pollution*, 157(3):763–71, March 2009.
- [9] C. M. Kao, C. Y. Chen, S. C. Chen, H. Y. Chien, and Y. L. Chen. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation. *Chemosphere*, 70(8):1492–9, February 2008.
- [10] T. H. Lee, I. G. Byun, Y. O. Kim, I. S. Hwang, and T. J. Park. Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate. *Water science and technology*, 53(4-5):263–72, February 2006.
- [11] P. Höhener and V. Ponsin. In situ vadose zone bioremediation. *Current opinion in biotechnology*, 27:1–7, June 2014.
- [12] Vidali M. Bioremediation. An overview. *Pure and applied chemistry*, 73(7):1163–72, July 2001.

[13] A. San Miguel, P. Ravanel, and M. Raveton. A comparative study on the uptake and translocation of organochlorines by *Phragmites australis*. *Journal of hazardous materials*, 244:60–69, January 2013.

[14] R. B. Meagher. Phytoremediation of toxic elemental and organic pollutants. *Current opinion in plant biology*, 3(2):153–62, April 2000.

[15] I. Kuiper, E. L. Lagendijk, G. V. Bloemberg, and B. J. Lugtenberg. Rhizoremediation: a beneficial plant-microbe interaction. *Molecular plant-microbe interactions*, 17(1):6–15, January 2004.

[16] R. M. Atlas and J. Philp. Bioremediation. *Applied microbial solutions for real-world environmental cleanup*, October 2005.

[17] R. L. Dias, L. Ruberto, A. Calabró, A. L. Balbo, M. T. Del Panno, and W. P. Mac Cormack. Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. *Polar biology*, 38(5):677–87, May 2015.

[18] M. J. Whelan, F. Coulon, G. Hince, J. Rayner, R. McWatters, T. Spedding, and I. Snape. Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. *Chemosphere*, 131:232–40, July 2015.

[19] A. Volpe, S. D'Arpa, G. Del Moro, S. Rossetti, V. Tandoi, and V. F. Uricchio. Fingerprinting hydrocarbons in a contaminated soil from an Italian natural reserve and assessment of the performance of a low-impact bioremediation approach. *Water, Air, Soil Pollution*, 223(4):1773–82, May 2012.

[20] G. A. Silva-Castro, I. Uad, A. Rodríguez-Calvo, J. González-López, and C. Calvo. Response of autochthonous microbiota of diesel polluted soils to land-farming treatments. *Environmental Research*, 137:49–58, February 2015.

[21] J. Williams. *Bioremediation of contaminated soils: A comparison of in situ and ex situ techniques*. Engineering Biology, 2006.

[22] S. V. Mohan, K. Sirisha, N. C. Rao, P. N. Sarma, and S. J. Reddy. Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. *Journal of hazardous materials*, 116(1-2):39–48, December 2004.

[23] R. Boopathy. Factors limiting bioremediation technologies. *Bioresource technology*, 74(1):63–67, August 2000.

[24] S. Harekrushna and D. C. Kumar. A review on: bioremediation. *Int J Res Chem Environ*, 2(1):13–21, 2012.

[25] I. Sharma. Bioremediation techniques for polluted environment: concept, advantages, limitations, and prospects. *InTrace metals in the environment-new approaches and recent advances*. IntechOpen, December 2020.