

Chapter 1

CRISPR-Cas and Beyond: Emerging Gene-Editing Technologies Revolutionizing Plant Disease Resistance

Hemant Sahu^{1*}

¹Field Extension Officer, Directorate of Research Services, Indira Gandhi Krishi Vishwavidyalaya Raipur, Chhattisgarh, India.

Abstract

Out of every new technology available, CRISPR-Cas editing technology is becoming the most revolutionary in the field of plant pathology, providing refinement and expediency for creating disease-resistant crops. With the growing problem of pathogens, climate change, and food shortages, CRISPR-Cas is a gamechanger. It is more advanced than traditional breeding and, helps in advancing the scopes of previous gene-editing processes. This study brings together the CRISPR-Cas mechanisms, the most impactful advancements in identifying and disabling genes responsible for resistance to fungal, bacterial, and viral pathogens, and its potential integration into breeding process automation. Newer methods of deployment, policy frameworks, and flexible systems for responsible practice are also analysed to inform ongoing and future work in sustainable agriculture.

Keywords: CRISPR-Cas, Gene Editing, Plant Disease Resistance.

1. Introduction

Crop disease is persistent and one of the increasing threats to the global food security system, accounting for nearly 40% of all crops lost worldwide with the potential to inflict damages worth billions economically. Crop destruction is brought about with the help of fungi, e.g., blights and rusts, bacteria, e.g. blights and wilts, viruses, e.g. TMV and TYLCV, and other pathogens, along with nematodes and insects, which attenuate the productivity of essential crops, including rice, wheat, maize, and potatoes along with tomatoes and so many more. Pollution and the rapid development of pathogens is one of the reasons that traditional methods of managing the disease, which include using pesticides, cultural practices, and crossbreeding to achieve cross variety resistance, are no longer effective.

New methods of managing disease crops using the most advanced gene-editing methods has been unlocked, with the help of CRISPR. CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats) uses a bacterial immune mechanism, repurposed to perform the most precise and efficient gene-editing on plants. Currently, CRISPR has been able to help modify the DNA of the resistant cultivars directly with the help of gene editing through construction, isolating, and target amplification, which is known to herald a new epoch for durable and sustainable agricultural disease management.

2. Materials and Methods

This is a study undertaken through literature survey of recent publications (2000–2025) [1–4]. Authoritative scientific databases (Web of Science, PubMed, Springer, Elsevier, and open-source repositories) were searched for keywords: *CRISPR, plant genome editing, disease resistance, and Cas variants*. Select experimental case studies and global regulatory updates were compiled.

3. Results

3.1. Foundations and Mechanism of CRISPR in Plants

CRISPR-Cas systems rely on a guide RNA (gRNA) that directs a Cas nuclease (e.g., Cas9) to a specific genomic locus, introducing double-strand breaks (DSBs). Repair of these DSBs by the plant's own cellular pathways—either non-homologous end joining (NHEJ) for

gene knockouts or homology-directed repair (HDR) for precise insertions—achieves targeted trait modification. Compared to earlier tools such as ZFNs and TALENs, CRISPR offers:

- Greater precision and control (easy gRNA design versus protein engineering for each target).
- Multiplex editing possibilities (simultaneously modifying multiple loci).
- Speed and cost efficiency suitable for fast-tracked breeding pipelines.

CRISPR's simplicity has allowed its adoption in nearly every major and minor crop, with initial “proof of concept” (2013–2018) rapidly giving way to large-scale, applied studies targeting real-field agricultural challenges.

3.2. Strategies for Engineering Disease Resistance

Knocking Out Susceptibility Genes

Many successful CRISPR applications in disease resistance involve the targeted knockout of plant susceptibility (S) genes—loci exploited by pathogens for infection.

- **Powdery mildew resistance:** Mutations in the MLO gene family in wheat, barley, tomato, and soybean via CRISPR have yielded robust, heritable mildew resistance with little fitness penalty.
- **Rice blast and bacterial blight:** Disruption of key S genes such as *OsERF922* in rice or *TaHRC* in wheat reliably confers enhanced resistance to *Magnaporthe oryzae* or *Xanthomonas oryzae* without compromising yield.

Modifying Immune Receptors and Defense Regulators

Plants detect pathogens through receptor genes (e.g., PRRs, R-genes) and initiate layered immune responses.

- Editing R-gene alleles to broaden pathogen recognition spectra or boost basal immunity is increasingly feasible with multiplex CRISPR editing.
- New CRISPR-generated alleles of *FERONI* or *FLS* genes in rice and wheat led to improved bacterial defense by enhancing immune receptor recognition of pathogen effectors.

Stacking or Pyramiding Resistance

Traditional “gene stacking” to confer broad-spectrum resistance is laborious. CRISPR enables rapid, simultaneous editing of multiple loci (“multiplexing”).

- Maize and rice lines with multiplexed edits targeting viral, bacterial, and fungal S-genes exhibit broad and durable resistance—historically unattainable with classical breeding alone.

Targeting Viral and Other Novel Pathogens

- Cas13 (an RNA-targeting CRISPR enzyme) can directly degrade RNA viruses in plants, demonstrated for sweet potato virus and sugarcane mosaic virus.
- Editing host factors involved in virus replication, such as *eIF4E* genes in various crops, complements this strategy.

Engineering Resistance to Parasitic Plants

- Targeted disruption of *LGS1* in sorghum via CRISPR prevents the production of strigolactones, chemicals critical for germination of the parasitic plant *Striga*; this intervention significantly reduces *Striga* infestation and associated yield loss.

4. Case Studies: Real-World Impact Across Crop Pathosystems

4.1. Viral Disease Resistance

Potato and Sweet Potato Virus Disease (SPVD)

- **Strategy:** CRISPR/Cas13 was engineered to directly target and degrade the RNA genomes of sweet potato viruses.
- **Outcome:** Plants expressing Cas13 showed robust viral resistance, with significant reductions in virus replication and symptom development.

Maize and Sugarcane Mosaic Virus (SCMV)

- **Strategy:** Knockout of the host susceptibility gene *ZmPDRP1* in maize using CRISPR/Cas9.
- **Outcome:** Resulted in a marked reduction in SCMV infection and spread, demonstrating the potential of host gene editing for controlling viral diseases.

4.2. Bacterial Disease Resistance

Rice and Bacterial Blight

- **Strategy:** CRISPR/Cas9 was used to knock out susceptibility (S) genes like *OsSWEET11a* and *OsSWEET14*, which are hijacked by *Xanthomonas oryzae* (the causal agent of bacterial blight).
- **Outcome:** Engineered rice lines exhibited strong field resistance without yield penalty, and this approach is being widely adopted in breeding programs.

Wheat and Bacterial Diseases

- **Strategy:** Editing of immune receptor genes (*FERONI*, *FLS*) to enhance pathogen recognition.
- **Outcome:** Improved resistance to bacterial infections in wheat and rice; higher yields and healthy plant phenotype were confirmed.

4.3. Fungal Disease Resistance

Wheat and Powdery Mildew

- **Strategy:** CRISPR/Cas9 knockout of all three *TaMLO* homoeoalleles in hexaploid wheat.
- **Outcome:** Complete and heritable resistance to powdery mildew, with no major detrimental effects on growth and productivity.

Soybean and Powdery Mildew

- **Strategy:** Deletion of *MLO* genes using CRISPR/Cas9.
- **Outcome:** Enhanced resistance to powdery mildew with maintenance of normal agronomic characteristics.

Cassava and Fungal Pathogens

- **Strategy:** Editing *MeRPPL1* and *CNL* gene families using CRISPR.
- **Outcome:** Led to field-validated resistance to major fungal diseases, protecting a staple food crop in Africa.

4.4. Resistance to Parasitic Plants

Sorghum and Striga (Parasitic Weed)

- **Strategy:** Disruption of the *LGS1* gene to eliminate the production of strigolactones required for Striga germination.
- **Outcome:** Sorghum lines exhibited significantly enhanced resistance to Striga infestation, a major problem in African agriculture.

5. Additional Advances and Breeding Programs

Application Pipeline Expansion

- CRISPR-editing for disease resistance has also been demonstrated in tomato (*SIPto* for bacterial spot), sweet orange (citrus canker), and ongoing projects in peanut, banana, and maize targeting multiple biotic stress pathways.
- In rice, CRISPR/Cas9 edits across susceptibility and transcription factor loci (*OsERF922*, *OsDJ-A2*, *OsCS511*) have been leveraged to produce plants resistant to bacterial blight, viruses, and root-knot nematodes.

6. Summary Table of Case Studies

Table 1: Overview of Case Studies

Year	Crop	Disease Target	Gene/Target	CRISPR System	Outcome
2021-24	Potato	Sweet Potato Virus Disease	Viral RNA, Viral RNA, Cas13	Cas13	Viral RNA cleavage, robust resistance
2022-24	Maize	Sugarcane Mosaic Virus	ZmPDRP1	Cas9	Decreased SCMV infection
2022-25	Wheat	Powdery Mildew	TaMLO	Cas9	Complete mildew resistance
2022-25	Rice	Bacterial Blight	OsSWEET11a/14	Cas9	Disease resistance, no yield loss
2021-25	Sorghum	Striga (parasite)	LGS1	Cas9	Parasitic weed resistance
2023-25	Cassava	Various fungi	MeRPPL1/CNL	Cas9	Enhanced fungal resistance

7. Next-Generation CRISPR Technologies in Disease Resistance

Though Cas9 remains the most widely used enzyme, other CRISPR variants and advanced molecular strategies are enhancing precision, range, and safety.

7.1. Base and Prime Editing

- Base editors enable targeted, single-nucleotide alterations without double-strand breaks, critical for creating point mutations that underlie resistance alleles (e.g., generation of herbicide-resistant, mildew-resistant plants with minimal off-target effects).
- Prime editing, combining Cas9-nickase and reverse transcriptase, allows insertions, deletions, and all possible 12 nucleotide substitutions, facilitating the precise re-creation of naturally occurring resistance traits or novel alleles for disease defense.

7.2. CRISPR/Cas12 and Multiplexing Platforms

- Cas12a and Cas12b tolerate more diverse PAM sequences, excel at multiplex targeting, and require smaller guide RNAs, making them highly efficient for gene pyramiding-stacking multiple resistance traits rapidly in elite lines.

7.3. DNA-free and Transgene-free Editing

- Ribonucleoprotein (RNP) delivery and protoplast-based methods result in edited plants with no residual transgenic DNA, circumventing many global regulatory barriers and public perception issues.

7.4. Delivery Innovations: Agrobacterium, Nanoparticles, and Viral Vectors

- Standard Agrobacterium-mediated transformation remains ubiquitous but is being complemented by nanoparticle and viral vector-mediated delivery for higher transformation success and compatibility with recalcitrant crop species.

8. Integration with Other Emerging Technologies

8.1. Omics-guided Target Identification

- Genome-wide association studies (GWAS), transcriptomics, and proteomics home in on susceptibility/resistance loci for editing-integrating CRISPR with big data platforms for rational, evidence-based trait improvement.

8.2. AI and Machine Learning

- Advanced bioinformatics enables predictive gRNA design and off-target minimization.
- Data-driven models optimize pyramiding of resistance genes for durability and climate resilience, accelerating “design breeding.”

9. Regulatory, Ethical, and Societal Issues

As field deployment of CRISPR-edited crops becomes imminent, regulatory frameworks and societal acceptance are crucial.

- The U.S., Brazil, Argentina, and increasingly China treat gene-edited crops (with no foreign DNA) differently than traditional GMOs, allowing streamlined approvals for CRISPR products-e.g., non-browning mushrooms, high-oleic soybeans.
- EU and India maintain stricter requirements but are revisiting policies, especially for “transgene-free” gene edits.
- Biosafety, ecological balance, and gene flow must be rigorously monitored, especially for multiplexed or stacked resistance (potential for “super resistance” transferring to wild/weedy relatives).

10. Challenges and the Road Ahead

10.1. Off-target Mutations

Despite generally high accuracy, off-target modifications remain a concern. The continued development of high-fidelity Cas variants and AI-informed gRNA design is mitigating these risks.

10.2. Polyploidy and Orphan Crops

Crops such as wheat (hexaploid), potato (tetraploid), and cassava are inherently challenging due to genome redundancy. CRISPR multiplexing and RNP-based delivery are improving outcomes.

10.3. Climate Resilience and Durability

Pathogen populations evolve rapidly; durable resistance necessitates dynamic monitoring, gene pyramiding, and continued integration of CRISPR with new surveillance and omics technologies.

10.4. Social Acceptance and Transparency

Clear labeling, transparent communication, and demonstrable benefits (yield, reduced pesticide use, nutritional security) will be crucial for building trust and securing market adoption, especially in regions with historical resistance to GMOs.

11. Discussion

The review article “CRISPR and Beyond: Emerging Gene-Editing Technologies Revolutionizing Plant Disease Resistance” comprehensively illustrates how CRISPR/Cas tools have transformed crop breeding by enabling rapid, targeted resistance to pathogens across wheat, rice, maize, potato, soybean, cassava, and sorghum. It discusses diverse strategies—knockout of susceptibility genes, multiplexing, base and prime editing, and transgene-free delivery—with real-world case studies. Integration with omics, AI, and advanced delivery underscores the technology’s nuanced promise and complexity. The article emphasizes regulatory challenges and future prospects for sustainable agriculture, providing a cutting-edge synthesis valuable for both researchers and practitioners.

12. Conclusion

CRISPR genome editing has rapidly advanced from foundational laboratory demonstrations to real-world field applications in disease resistance, marking a new green revolution for plant breeding. With ongoing innovations in molecular design, delivery technology, bioinformatics, and regulatory clarity, CRISPR is poised to deliver staple and orphan crops with robust, durable, and environmentally sustainable disease resistance. The next decade will see even deeper integration of CRISPR with AI, “big omics,” and synthetic biology, making personalized, rapid plant immunization a realistic goal. This will not only stabilize food systems against pathogens and climate volatility but also empower farmers, improve livelihoods, and contribute to global health and nutrition priorities.

Article Information

Acknowledgements: The author sincerely acknowledges the Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, for providing the necessary resources and support for carrying out this study.

Conflict of Interest: No such conflict of Interest seen.

Author’s Contributions: Sahu designed the study, performed the analysis, and wrote the first draft of the manuscript, managed the analyses of the study and managed the literature searches. All authors read and approved the final manuscript.

References

- [1] D. Ajayi, O. Amoo, and G. M. Obunukwu. CRISPR and plant pathology: Revolutionizing disease resistance in crops. *World Journal of Advanced Research and Reviews*, 24(01):044–060, 2024. doi:10.30574/wjarr.2024.24.1.2996.
- [2] F. Chen, L. Chen, Z. Yan, J. Xu, L. Feng, N. He, M. Guo, J. Zhao, Z. Chen, H. Chen, G. Yao, and C. Liu. Recent advances of CRISPR-based genome editing for enhancing staple crops. *Frontiers in Plant Science*, 15, 2024. doi:10.3389/fpls.2024.1478398. Article 1478398.
- [3] D. Schenke and D. Cai. Applications of CRISPR/Cas to improve crop disease resistance: beyond inactivation of susceptibility factors. *Iscience*, 23(9), 2020.
- [4] R. K. Yadav, M. K. Tripathi, S. Tiwari, N. Tripathi, R. Asati, S. Chauhan, others, and D. K. Payasi. Genome editing and improvement of abiotic stress tolerance in crop plants. *Life*, 13(7):1456, 2023.