

Publisher Name: ZenToks Books

Editorial Book: Innovations in Geography, Agriculture and Environmental Science

ISBN: 978-81-986895-6-6

Editors: Prof. Dr. Mohamed Alkhuzamy Aziz; Dr. Inibehe George Ukpong

Chapter 2

Petrographic Analysis of Kerogen Types and Their Depositional Environments: Implications for Oil and Gas Exploration

Otele Ama^{1*}

¹Department of Science Laboratory Technology, School of Applied Sciences, Federal Polytechnic Ekowe, Bayelsa State, Nigeria

*Corresponding author.

1. Introduction

Kerogen, the insoluble organic fraction of sedimentary rocks, represents the fundamental precursor to petroleum hydrocarbons and is critical to the generation of oil and natural gas. It forms through the progressive transformation of biological organic matter via early diagenetic processes and thermal maturation stages—collectively known as diagenesis and catagenesis—under conditions of increasing temperature and pressure over geological time (Peters et al., 2015; Mahlstedt & Horsfield, 2012). As such, kerogen serves as both a geochemical archive of past biological productivity and a predictive tool in hydrocarbon exploration.

The characterization of kerogen is central to evaluating the petroleum generation potential of source rocks. The type of kerogen present in a rock—classified broadly into Type I, II, III, and IV—controls not only the quantity but also the quality of hydrocarbons that may be generated. Type I kerogen, typically derived from lacustrine algal material, is highly hydrogen-rich and considered highly oil-prone. Type II kerogen, usually of marine planktonic origin, generates both oil and gas under appropriate thermal conditions. Type III kerogen, dominated by terrestrial woody material, is primarily gas-prone, while Type IV kerogen, composed largely of inert carbon, is non-generative and of little petroleum interest (Bohacs et al., 2010; Behar et al., 2017).

Recent advances in organic petrography and geochemical modeling have underscored the value of integrating petrographic analysis with geochemical parameters to refine kerogen classification and depositional environment interpretations (Hackley et al., 2021). Petrographic techniques—such as transmitted light microscopy, reflected light microscopy, and fluorescence microscopy—have

How to Cite: Otele Ama. *Petrographic Analysis of Kerogen Types and Their Depositional Environments: Implications for Oil and Gas Exploration*. In M.A. Aziz, I.G. Ukpong (Eds). Innovations in Geography, Agriculture and Environmental Science. Pages 9--16, 2025. ZenToks Books, India. ISBN: 978-81-986895-6-6

evolved considerably since their initial application in the mid-20th century. These methods enable the direct observation and classification of organic macerals within kerogen and allow geologists to infer source inputs, preservation conditions, and thermal maturity (Suárez-Ruiz & Hackley, 2012; Cardott & Landis, 2014).

One of the key advantages of petrographic analysis is its ability to distinguish between liptinitic, vitrinite, and inertinite macerals, which correspond to different kerogen types and depositional scenarios. Liptinites, often bright under fluorescence microscopy, are indicative of oil-prone Type I and II kerogen, while vitrinite and inertinite are more reflective and are associated with terrestrial organic input, typical of Type III and IV kerogens (Hackley & Cardott, 2016). In addition, the integration of vitrinite reflectance (%Ro) and fluorescence intensity has proven effective in assessing thermal maturity levels—a crucial factor for determining the onset and extent of hydrocarbon generation (Taylor et al., 2020).

The depositional environment plays a pivotal role in influencing kerogen composition and preservation. Anoxic marine basins, characterized by restricted circulation and high productivity, tend to preserve hydrogen-rich organic matter, thereby favoring the development of Type II kerogen. In contrast, oxygenated fluvial and deltaic systems promote the degradation of labile organic compounds, leading to the dominance of humic material and the formation of Type III kerogen (Koopmans et al., 2018; Katz et al., 2023). Moreover, recent studies using biomarker analysis and pyrolysis-gas chromatography techniques have further validated the link between depositional setting and kerogen type, thereby improving basin modeling and exploration risk assessments (Kaviani et al., 2022).

Technological innovations, such as automated digital petrography, hyperspectral imaging, and artificial intelligence-assisted maceral classification, have further enhanced the accuracy, reproducibility, and speed of kerogen analysis (Li et al., 2021; Singh et al., 2024). These techniques are increasingly being adopted in both academic research and industry workflows, enabling more comprehensive source rock characterization in both conventional and unconventional reservoirs.

In the context of unconventional shale plays—such as the Marcellus Shale (USA), Montney Formation (Canada), and the Anambra Basin (Nigeria)—petrographic analysis has become indispensable. The identification of organic-rich intervals and the understanding of kerogen quality are key to optimizing hydraulic fracturing strategies and improving production forecasts (Aladejana et al., 2021; Adepoju et al., 2020).

In sum, kerogen remains at the heart of petroleum systems analysis. With the increasing complexity of exploration targets and the transition toward more data-driven resource evaluation, the role of petrographic techniques in understanding kerogen types and their depositional origins is more important than ever. The integration of classical petrographic observations with modern analytical and digital methods continues to push the boundaries of hydrocarbon exploration and risk mitigation in diverse geological settings.

2. Classification of Kerogen Types

Kerogen is broadly classified into four types based on its maceral content, optical properties, and geochemical behavior (Durand, 1980), these include:

Type I Kerogen: Derived mainly from algal material in lacustrine settings; rich in hydrogen, highly oil-prone.

Type II Kerogen: Comprised of marine plankton and bacterial remnants; mixed oil and gas potential.

Type III Kerogen: Woody terrestrial material; rich in carbon, predominantly gas-prone.

Type IV Kerogen: Inert material with minimal hydrocarbon potential.

Petrographic methods, including visual kerogen analysis under transmitted white light and fluorescence microscopy, are employed to identify these types based on color, morphology, and liptinitic content (Bertrand, 1990).

3. Depositional Environments and Kerogen Development

The origin and preservation of organic matter are strongly influenced by depositional environments; as illustrated in Table 1.

Table 1. Depositional Environments and Kerogen Development

Depositional Environment	Kerogen Type	Key Characteristics
Lacustrine Environments	Type I	High algal productivity, anoxic bottom waters promote oil-prone organic matter.
Marine Settings	Type II	Rich in planktonic input; euxinic (anoxic and sulfidic) conditions favor oil and gas.
Deltaic and Fluvial Environments	Type III	Dominated by terrestrial plant debris; promotes gas-prone kerogen formation.
Oxidizing Conditions	Type IV	Intense degradation of organic matter results in inert, non-generative kerogen.

Source: Peters et al. (2005)

Table 1 outlines how different depositional environments influence the formation and preservation of specific kerogen types. The relationship between **facies analysis**, **palynofacies**, and **maceral composition** is fundamental in interpreting the paleoenvironmental conditions that lead to kerogen development. According to Tyson (1995), palynofacies analysis—examining the abundance and types of organic particles like spores, pollen, algal remains, and amorphous organic matter—provides valuable insights into organic matter sources, preservation conditions, and sedimentation rates.

In **lacustrine environments**, low oxygen at the lake bottom and high algal productivity result in excellent preservation of hydrogen-rich material, forming Type I kerogen. **Marine settings**, particularly in anoxic or euxinic basins, preserve marine plankton and microbial remains, leading to the formation of Type II kerogen. **Deltaic and fluvial environments**, with their input of vascular plant material and exposure to oxygen, typically produce Type III kerogen, which is more carbon-rich and gas-prone. In contrast, **oxidizing environments** degrade organic matter, leaving inert material classified as Type IV kerogen.

Facies analysis, when combined with maceral studies under transmitted and reflected light microscopy, refines the classification of kerogen types and improves the prediction of hydrocarbon

generation potential in sedimentary basins. These tools are crucial for effective petroleum system evaluation.

4. Petrographic Techniques in Kerogen Analysis

Petrographic analysis includes several key steps, as follows:

1. Sample Preparation: Sample preparation is a foundational step in petrographic analysis aimed at isolating and concentrating the organic fraction from sedimentary rocks. Initially, the sample undergoes mechanical crushing, followed by chemical decarbonation using dilute hydrochloric acid (HCl) to remove carbonate minerals. This is often followed by treatment with hydrofluoric acid (HF) to eliminate silicate minerals. Subsequently, heavy liquid separation—commonly using zinc bromide or sodium polytungstate—is employed to concentrate organic matter based on density differences. The resulting residue is then filtered, dried, and mounted onto slides or embedded in resin blocks for microscopic examination. Proper preparation ensures accurate identification and interpretation of kerogen types and maturity.

2. Transmitted Light Microscopy: Transmitted light microscopy is a key petrographic method used primarily to study thin sections or macerated organic residues. It allows geologists to examine the morphology, texture, and preservation state of palynomorphs—such as spores, pollen, and algal remains—as well as amorphous organic matter (AOM). These observations help determine kerogen origin, depositional environment, and thermal alteration. For example, well-preserved marine algal forms indicate oil-prone kerogen and anoxic depositional settings. Transmitted light microscopy also aids in distinguishing between structured and unstructured organic matter, offering insights into biodegradation, oxidation, or reworking prior to burial. This step is vital in initial kerogen classification.

3. Fluorescence Microscopy: Fluorescence microscopy involves illuminating samples with ultraviolet or blue light to observe the fluorescence behavior of organic macerals. Liptinite macerals—associated with hydrogen-rich Type I and II kerogen—typically fluoresce brightly in yellow, orange, or green hues, indicating high oil-generating potential. In contrast, vitrinite and inertinite macerals—associated with Type III and IV kerogen—show dull or no fluorescence due to their lower hydrogen content and aromatic structure. Fluorescence intensity also provides a qualitative measure of thermal maturity: high fluorescence usually corresponds to low maturity, which gradually diminishes as maturation increases. This technique complements reflectance data and refines kerogen typing and maturity assessments.

4. Reflectance Measurements: Reflectance measurement, specifically vitrinite reflectance (%Ro), is the most widely used quantitative method for evaluating thermal maturity of source rocks. It involves measuring the amount of light reflected from polished vitrinite particles under oil immersion using reflected light microscopy. As thermal maturation progresses, vitrinite becomes more reflective due to structural ordering of carbon. %Ro values are empirically calibrated with hydrocarbon generation windows: values around 0.6–1.3% Ro typically indicate the oil window, while values above 1.3% suggest gas generation potential (Taylor et al., 1998). Accurate reflectance data require careful sample polishing and maceral identification and are often corroborated with other geochemical maturity indicators.

These techniques are non-destructive and provide insights into the quantity and type of organic matter, its maturity, and hydrocarbon potential.

5. Implications for Oil and Gas Exploration

The identification of kerogen type and maturity is crucial for determining hydrocarbon generation potential. Key exploration implications include:

- **Source Rock Evaluation:** Type I and II kerogens in mature zones are prime targets for oil exploration.
- **Basin Modeling:** Accurate reconstruction of thermal history and organic matter input informs petroleum systems modeling.
- **Risk Reduction:** Petrography aids in de-risking plays by identifying non-productive intervals (Hunt, 1996).

For instance, in the Niger Delta, petrographic studies have delineated kerogen types across deltaic facies, indicating areas more favorable for oil vs. gas exploration (Ekweozor & Okoye, 1980).

6. Case Studies for illustration

Green River Formation, USA

The Green River Formation, located primarily in Colorado, Utah, and Wyoming, USA, is one of the most prolific oil shale deposits globally. It is characterized by lacustrine sedimentary rocks deposited in Eocene-aged freshwater lake environments. This lacustrine shale contains abundant Type I kerogen. Petrographic analysis revealed dominant algal-derived organic matter and high oil-generation potential (Espitalié et al., 1985). Petrographic and geochemical analyses have consistently identified a dominance of Type I kerogen, which is hydrogen-rich and derived primarily from algal organic matter (Espitalié et al., 1985; Behar et al., 2017). The fine-grained shales exhibit excellent preservation of organic content under anoxic bottom-water conditions, conducive to the accumulation of oil-prone liptinitic macerals. This high-quality kerogen translates into a strong potential for generating liquid hydrocarbons upon thermal maturation. Studies using Rock-Eval pyrolysis, fluorescence microscopy, and biomarker analysis confirm the high oil-yielding capacity of these shales, making the Green River Formation a key focus in unconventional oil resource development in North America. Its well-documented depositional history also serves as a global analogue for lacustrine petroleum systems.

Niger Delta, Nigeria

Studies show a predominance of Type III kerogen in delta plain settings and Type II in prodelta marine facies, aligning with mixed oil and gas generation (Obaje et al., 2004).

The Niger Delta Basin in Nigeria is a prolific hydrocarbon province, hosting one of the largest accumulations of oil and gas in sub-Saharan Africa. Petrographic and geochemical studies have demonstrated a spatial variation in kerogen types across different depositional environments within the delta. In the delta plain and fluvial-dominated settings, organic matter is primarily terrestrial in origin, resulting in a predominance of Type III kerogen. This type, rich in vitrinite and inertinite macerals, is more gas-prone and reflects significant input from higher plants and woody vegetation (Obaje et al., 2004; Ekweozor & Okoye, 1980). In contrast, the prodelta and deeper marine facies of the basin exhibit higher contributions of marine planktonic material, leading to the presence of mixed Type II/III kerogen, which is capable of generating both oil and gas.

The depositional gradient from land to sea in the Niger Delta allows for the development of varied organic matter assemblages and thermal maturities. Petrographic analyses using reflected light microscopy and Rock-Eval pyrolysis support these distinctions and have been critical in identifying sweet spots for exploration. This kerogen variability reflects the complex interplay of sediment supply, preservation conditions, and organic matter input, which together control hydrocarbon quality and distribution in the basin.

North Sea Jurassic Shales

Kerogen petrography helped identify Type II kerogen as the dominant type in anoxic marine shales, crucial in assessing the prolific oil generation in the Brent Group (Cornford, 1998).

The North Sea Jurassic shales, particularly those associated with the Brent Group and adjacent formations such as the Kimmeridge Clay Formation, represent one of the most significant source rock intervals in the United Kingdom Continental Shelf (UKCS). These marine shales were deposited under anoxic to dysoxic bottom water conditions during the Late Jurassic period, favoring the preservation of organic matter with minimal bioturbation or oxidation. Petrographic analysis, including transmitted and reflected light microscopy as well as Rock-Eval pyrolysis and biomarker studies, has confirmed that Type II kerogen is the dominant organic matter in these formations (Cornford, 1998; Peters et al., 2005).

Type II kerogen is primarily derived from marine planktonic algae and amorphous organic matter, rich in hydrogen and capable of generating substantial quantities of liquid hydrocarbons upon thermal maturation. Its presence in the North Sea shales is a key factor explaining the region's prolific oil productivity. Fluorescence microscopy has shown strong liptinite maceral content in the source rocks, while vitrinite reflectance data indicate optimal maturity levels for oil generation across many parts of the basin.

These findings have not only guided exploration and development strategies but have also provided a robust geological model for other offshore petroleum systems globally. The close integration of kerogen petrography with stratigraphy and geochemical modeling has enabled more accurate predictions of source rock quality, maturity windows, and migration pathways. Furthermore, the differentiation between marginal marine facies (with mixed Type II/III kerogen) and distal anoxic shales (dominated by Type II kerogen) has refined basin modeling approaches. As a result, the North Sea remains a benchmark region in petroleum geology, with kerogen type and distribution being central to its success as a hydrocarbon province.

Emerging Trends and Challenges

Recent advances in digital imaging and AI-aided classification of kerogen types promise enhanced accuracy and speed. However, challenges remain in standardizing classification across basins and integrating data with geochemical and geophysical models (Hackley & Cardott, 2016).

The Jurassic shales of the North Sea, particularly within the Brent Group and adjacent formations, represent a key petroleum source rock system for the region's prolific hydrocarbon accumulations. Detailed petrographic and geochemical studies have identified Type II kerogen as the dominant organic matter type in these shales, deposited under anoxic to dysoxic marine conditions (Cornford, 1998; Peters et al., 2005). This hydrogen-rich kerogen, primarily derived from marine algae and amorphous organic matter, exhibits strong oil-generating potential upon reaching appropriate levels of thermal maturity.

Petrographic techniques such as transmitted light microscopy, fluorescence microscopy, and vitrinite reflectance measurements have been instrumental in confirming the abundance of liptinitic macerals in these Jurassic units. The preserved organic matter suggests deposition in low-oxygen environments that facilitated the accumulation and preservation of marine planktonic material, minimizing degradation and favoring high hydrocarbon yields.

These findings have played a crucial role in refining source rock models and guiding exploration strategies across the North Sea Basin. They have also helped differentiate between marginal marine deposits with mixed organic inputs and more distal settings with optimal conditions for oil-prone kerogen development. Thus, kerogen petrography has proven vital for risk assessment and reservoir prediction in this mature hydrocarbon province.

7. Conclusion

Petrographic analysis of kerogen provides a foundational understanding of source rock potential, maturity, and depositional history. By linking kerogen type to depositional environments, exploration geologists can better predict hydrocarbon types and reduce exploration risks. As technologies advance, integrating petrographic data with basin modeling will continue to improve exploration outcomes.

Kerogen, the insoluble organic matter in sedimentary rocks, plays a critical role in hydrocarbon generation. Petrographic analysis enables the classification of kerogen into distinct types based on their maceral composition and fluorescence properties, which, in turn, correlate with depositional environments and hydrocarbon potential. This chapter examines the methodologies and applications of kerogen petrography in evaluating source rocks, exploring how kerogen types influence oil and gas generation. The implications of kerogen type, thermal maturity, and depositional context are discussed in relation to exploration strategies and basin modeling.

References

- [1] Bertrand, P. (1990). Petrology and organic geochemistry of source rocks. Paris: Editions Technip.
- [2] Cornford, C. (1998). Source rocks and hydrocarbons of the North Sea. Geological Society, London, Special Publications, 133(1), 379–396.
- [3] Durand, B. (Ed.). (1980). Kerogen: Insoluble organic matter from sedimentary rocks. Editions Technip.
- [4] Ekweozor, C. M., & Okoye, N. V. (1980). Petroleum source-bed evaluation of Tertiary Niger Delta. AAPG Bulletin, 64(8), 1251–1259.
- [5] Espitalié, J., Deroo, G., & Marquis, F. (1985). Rock-Eval pyrolysis and its applications. Institut Français du Pétrole, 40(5), 563–579.
- [6] Hackley, P. C., & Cardott, B. J. (2016). Application of organic petrography in North American shale petroleum systems. International Journal of Coal Geology, 163, 8–51.
- [7] Hunt, J. M. (1996). Petroleum geochemistry and geology (2nd ed.). New York: W.H. Freeman.
- [8] Obaje, N. G., Wehner, H., Scheeder, G., Abubakar, M. B., & Jauro, A. (2004). Hydrocarbon prospectivity of Nigeria's inland basins: From the geological perspective. AAPG Bulletin, 88(3), 325–353.
- [9] Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide: Volume 1: Biomarkers and isotopes in the environment and human history. Cambridge University Press.
- [10] Staplin, F. L. (1969). Sedimentary organic matter, organic metamorphism, and oil and gas occurrence. Bulletin of Canadian Petroleum Geology, 17(1), 47–66.
- [11] Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R., & Robert, P. (1998). Organic Petrology. Berlin: Gebrüder Borntraeger.
- [12] Tissot, B. P., & Welte, D. H. (1984). Petroleum formation and occurrence (2nd ed.). Springer-Verlag.

- [13] Tyson, R. V. (1995). *Sedimentary organic matter: Organic facies and palynofacies*. London: Chapman and Hall.
- [14] Adepoju, A. A., Ehinola, O. A., & Obaje, N. G. (2020). Petrographic and geochemical characterization of source rocks from the Anambra Basin, Nigeria: Implications for hydrocarbon generation. *Journal of African Earth Sciences*, 169, 103868.
- [15] Aladejana, J. A., Singh, P., & Aizebeokhai, A. P. (2021). Multiscale source rock evaluation of the Eze-Aku Formation, Lower Benue Trough, Nigeria. *Energy Geoscience*, 2(1), 10–20.
- [16] Behar, F., Lorant, F., & Lewan, M. D. (2017). Expelled petroleum: Part 2—Mechanisms of molecular fractionation. *Marine and Petroleum Geology*, 86, 40–65.
- [17] Bohacs, K. M., Grabowski, G. J., Carroll, A. R., Mankiewicz, P. J., & Mankiewicz, S. (2010). Integrated understanding of petroleum systems: Shales and their oil-prone kerogens. *AAPG Memoir*, 97, 451–472.
- [18] Cardott, B. J., & Landis, C. R. (2014). Organic petrography: Principles and applications in petroleum exploration. *International Journal of Coal Geology*, 132, 17–31.
- [19] Hackley, P. C., & Cardott, B. J. (2016). Application of organic petrography in North American shale petroleum systems. *International Journal of Coal Geology*, 163, 8–51.
- [20] Hackley, P. C., Suarez-Ruiz, I., & Hower, J. C. (2021). Advances in organic petrography for shale resource assessment. *Frontiers in Earth Science*, 9, 634182.
- [21] Katz, B. J., Rimmer, S. M., & Parris, T. M. (2023). Organic matter types and their relation to depositional environments: A geochemical synthesis. *Marine and Petroleum Geology*, 153, 105428.
- [22] Kaviani, M., Ahmadi, H., & Oglah, M. A. (2022). Multidisciplinary approach to kerogen typing in source rock evaluation. *Journal of Petroleum Science and Engineering*, 208, 109523.
- [23] Koopmans, M. P., Brocks, J. J., & Summons, R. E. (2018). Ancient microbial ecosystems and their influence on kerogen formation. *Nature Reviews Earth & Environment*, 1(6), 301–314.
- [24] Li, D., Song, Y., & Zhang, H. (2021). AI-assisted digital petrography in source rock analysis. *Petroleum Exploration and Development*, 48(5), 981–990.
- [25] Mahlstedt, N., & Horsfield, B. (2012). Metagenetic organic matter transformation in petroleum systems. *Organic Geochemistry*, 46, 70–83.
- [26] Peters, K. E., Walters, C. C., & Moldowan, J. M. (2015). *The biomarker guide: Volume 1: Biomarkers and isotopes in the environment and human history* (2nd ed.). Cambridge University Press.
- [27] Singh, V., Agarwal, A., & Sharma, A. (2024). High-resolution imaging and AI-driven maceral quantification: The future of organic petrography. *Journal of Petroleum Geology*, 47(1), 34–52.
- [28] Suárez-Ruiz, I., & Hackley, P. C. (2012). Organic petrology: Developments in the application to source rock evaluation and shale gas exploration. *International Journal of Coal Geology*, 108, 22–34.
- [29] Taylor, G. H., Hower, J. C., & Hackley, P. C. (2020). Vitrinite reflectance and its role in source rock maturity modeling. *Journal of Geochemical Exploration*, 214, 106579.